RISK Identifizieren | Bewerten Handeln | Kommunizieren IDENT

Anthropogene Spurenstoffe: Strategie und Ergebnisse im Projekt RISK-IDENT

Dr. Manfred Sengl, LfU 27.03.2104

gefördert vom:

Gliederung

- Einführung in das Projekt RISK-IDENT
- Strategie für die Identifizierung von Spurenstoffen
- Beispielhafte Ergebnisse
- Zusammenfassung und Ausblick

RiSKWa

- http://risk-ident.hswt.de/
- http://www.riskwa.de/index.php

12 Verbundprojekte, ca. 30 Mio € Themenschwerpunkte:

- Identifizierung von gewässerrelevanten Spurenstoffen
- Risikomanagement in der Trinkwasserversorgung
- Spurenstoffe und Krankheitserreger in urbanen Räumen
- Risikomanagement von Spurenstoffen und Krankheitserregern aus diffusen Einträgen
- Risikomanagement von Punktquellen

Risikomanagement von neuen

Schadstoffen und

Krankheitserregern im

Wasserkreislauf

GEFÖRDERT VOM

Projektpartner

Landeswasserversorgung Stuttgart,
 Dr. Walter Weber/Dr. Wolfgang Schulz

Technische Universität München –Lehrstuhl für Siedlungswasserwirtschaft
 PD Dr. Thomas Letzel

Technische Universität München

- Hochschule Weihenstephan-Triesdorf Fakultät Biotechnologie und Bioinformatik,
 Prof. Dr. Frank Leßke, Marco Luthardt

 WEIHENSTEPHANTERESDORF
 WEIHENSTEPHANTERESDORF
 WEIHENSTEPHANTERESDORF
- LfU, Organische Analytik (Dr. Manfred Sengl), Stoffbewertung (Dr. Anne Bayer, Dr. Marion Letzel), Ökotoxikologie (Willi Kopf), Kommunikation (Dr. Stefan Glaser)
- CONDIAS GmbH Itzehoe, Dr. Barbara Fryda-Behrendt, Dr. Matthias Fryda

Die Koordination des Verbundprojektes liegt beim LfU (Dr. Marion Letzel und Dr. Manfred Sengl)

Identifizieren

- Bislang unbekannte Spurenstoffe
- Abbauprodukte
- in Laborkläranlagen, Säulen, Abwässern, OW, Uferfiltraten mithilfe LC-MS/MS
- Aufbau einer Datenbank STOFF-IDENT

Bewerten

- Untersuchung von Persistenz, Mobilität und Rohwasserrelevanz
- Ökotoxikologische Wirktests
- Monitoring
- Bewertung des Risikos für die aquatische Umwelt

Minimieren

- Elimination von Spurenstoffen mit4. Reinigungsstufe
- neues oxidativesVerfahren
- Handlungsanweisungen
- Wissenstransfer;
 Kommune,
 Bürger, Wirtschaft

Untersuchte Stoffgruppen, Versuchsstellungen

- Arzneimittelwirkstoffe (u.a. Sartane, Bisoprolol, Hydrochlorothiazid, Venlafaxin, OH-Clarithromycin etc.)
- Pflanzenschutzmittelwirkstoffe (z.B. Flurtamone, Prosulfocarb)
- Biozide (Isothiazolinone, Cybutryn)
- Duftstoffe (OTNE, Acetylcedrene, Hedion, DHMOL)

Vorhersage möglicher Transformationsprodukte (UM-PPS, Literaturstudium)

Versuchsstellungen:

- Laborkläranlagen, Dosierung bis zu 50 μg/l, Laufzeit bis 6 Wochen
- Säulenversuche, reale Böden, aerobe und anaerobe Bedingungen
- Reale Proben aus Kläranlagen, Oberflächengewässern und Uferfiltratbrunnen
 - ► Einsatz von LC-(HR)MS/MS sowie von Biotestverfahren

Identifizierung von Transformationsprodukten (TP)

- Analyse der Kläranlagenabläufe mit hochauflösender LC-MS(/MS)
- Computergestützte Vorhersage der TP mit "pathway prediction system"

- Suspected-target Screening: Nachverfolgung der exakten Masse der vorhergesagten TP
- Non-target Screening: Identifizierung weiterer möglicher TP
- Strukturaufklärung über MS/MS
- Validierung der gefundenen Abbauprodukte durch 2. analytisches System
- Relevanz: Untersuchung von Umweltproben mit (3.) analytischem Routinesystem (LC-MS/MS)

Kategorisierung der Molekülidentifizierung

Kategorie 1: durch Referenzsubstanz bestätigt

Kategorie 2: MS/MS stimmt mit MS/MS-Daten aus Literatur bzw. Datenbanken überein oder Bestätigung durch eindeutige Fragmente

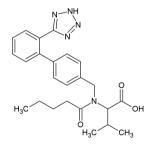
Kategorie 3: von mehreren Labors gemessen, inkl. MS/MS und angenommene Struktur nicht widerlegt

Kategorie 4a: von einem Labor gemessen, inkl. MS/MS und angenommene Struktur nicht widerlegt

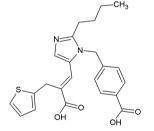
Kategorie 4b: von mehreren Labors gemessen, aber kein MS/MS möglich

Kategorie 5: Peak und Masse vorhanden, kein MS/MS möglich

In Anlehnung an: Schymanski et al., 2014, ES&T, dx.doi.org/10.1021/es5002105

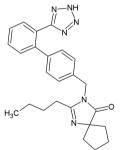


Bewerten: Beispiel Sartane (Blutdrucksenker)

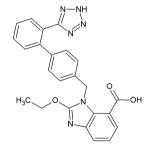

- stark steigende Verbrauchsmengen
- Vorkommen: Kläranlagenabläufe, Fließgewässer

Valsartan

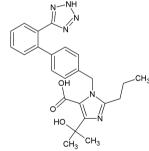
56 t/a 2009


´02 - ´09: + 256%

Eprosartan


33,7 t/a 2009

'02 - '09: + 202%


Irbesartan

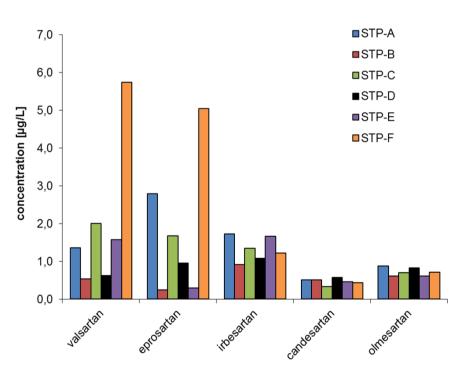
12,6 t/a 2009

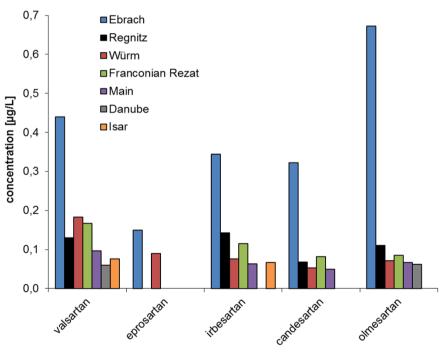
Candesartan

8,3 t/a 2009

Olmesartan

2,6 t/a 2009



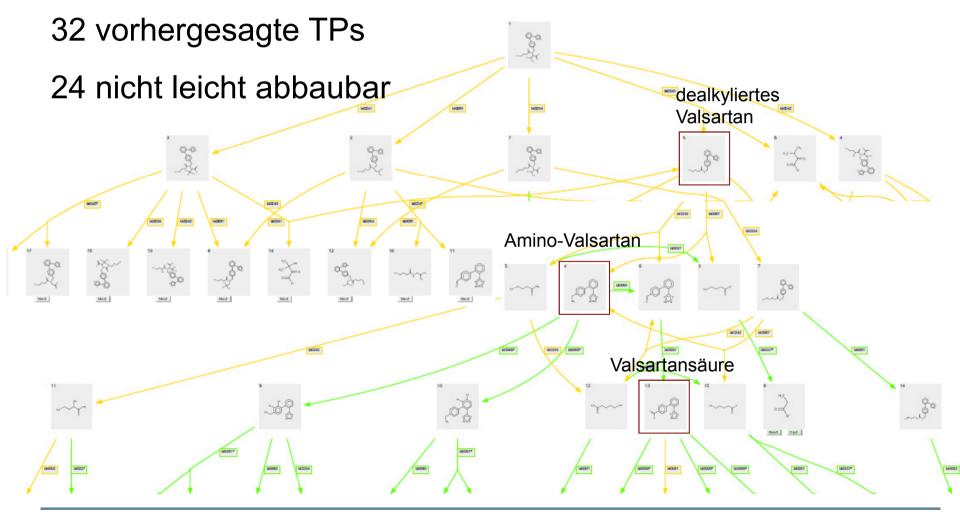


Monitoring: Sartane in Kläranlagen und Oberflächengewässer

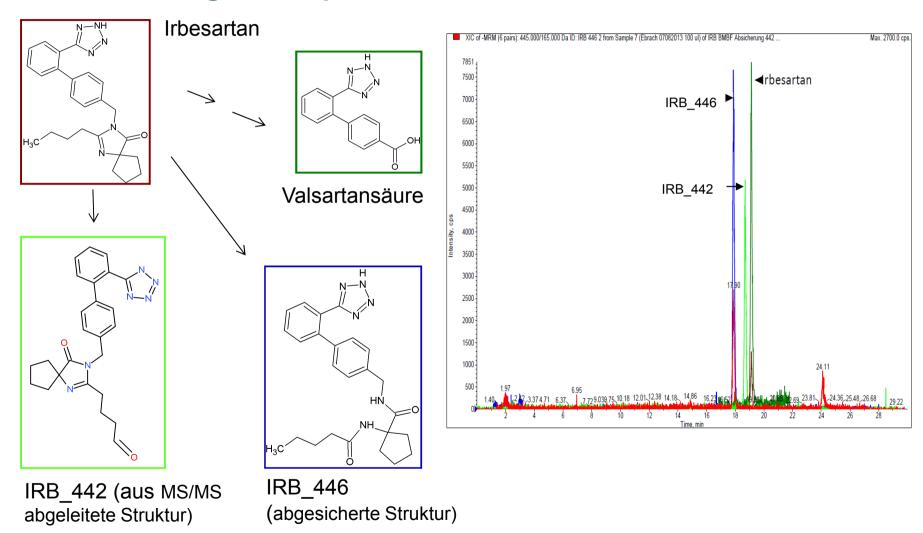
Elimination in Laborkläranlagen

	Elimi- nation [%]	mittlere Elimina- tion [%]	Primär- abbau (BIOWIN4)
Valsartan	94 – 98	96	4,08
Epro- sartan	27 – 63	43	
Irbe- sartan	16 – 40	29	
Cande- sartan	8 – 22	19	
Olme- sartan	7 – 21	17	2,99

Foto: LfU



Pathway-Prediction System (UM-PPS): Valsartan



Identifizierung Abbauprodukte von Irbesartan



denote it de product														
File Name	Sample Type	Sample Name	Integration Type	Area	ISTD Area	Area Ratio	Specified Amount	Calculated Amount	% Diff	%RSD-AMT	Peak Status	Level	Units	RT
isar100ul	Unknown		Method Settings	2339	NA	NA	NA	30.163	NA	NA	Response Low	NA		18.31
KA_n1_10ul	Unknown		Method Settings	8186	NA	NA	NA	628.484	NA	NA		NA		18.30
FRREZAT100ul	Unknown		Method Settings	9982	NA	NA	NA	72.887	NA	NA		NA		18.30
KA_GAB_10ul	Unknown		Method Settings	6029	NA	NA	NA	507.860	NA	NA		NA		18.30
irb446_50ng1_140130171923	Standard		Method Settings	7465	NA	NA	50.000	58.813	17.63	0.00		1		18.33
irb446_100ng2_140130175050	Standard		Method Settings	14640	NA	NA	100.000	98.922	-1.08	0.00		2		18.29
irb446_200ng3_140130182216	Standard		Method Settings	29967	NA	NA	200.000	184.604	-7.70	0.00		3		18.32
irb446_500ng4_140130185344	Standard		Method Settings	86985	NA	NA	500.000	503.336	0.67	0.00		4		18.30
irb446_750ng5_140130192511	Standard		Method Settings	133435	NA	NA	750.000	762.988	1.73	0.00		5		18.30
irb446_1000ng6_140130195637	Standard		Method Settings	174284	NA	NA	1000.000	991.337	-0.87	0.00		6		18.30

Analytik mit synthetisierter Substanz (Kosten rund 5.500 €)

Nachweis von Transformationsprodukten (TP) in realen Proben

Strategie: target-analysis mit den beim suspected-target Screening ermittelten Massenübergängen (Verwendung von Massenspektrometern des gleichen Herstellers, Übernahme der MS-Bedingungen):

IRB_446 – zunächst qualitativer Nachweis, Hinweis auf hohe Konzentrationen Quantifizierung mit synthetisiertem Standard:

Kläranlagenabläufe: bis 1,2 μg/l

Oberflächengewässer: bis 0,1 µg/l

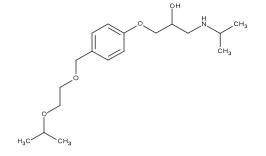
Uferfiltratbrunnen: bis 0,03 μg/l

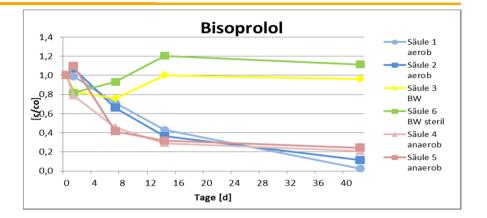
IRB_442 – in Kläranlagenabläufen und Oberflächengewässern deutlich vorhanden, kein Nachweis in Uferfiltratbrunnen

Anwendung der Methode auf weitere potentielle TP u.a. von Bisoprolol, Venlafaxin etc. war dagegen nicht erfolgreich (Konzentrationen vermutlich nicht ausreichend hoch)

Säulenversuche

- Bodengängigkeit ausgewählter Spurenstoffe und TPs an Aquifersäulen (anaerob und aerobe Bedingungen) im Labor
- Verifizierung des Mobilitätsverhaltens an realen Standorten (Uferfiltrat, Oberflächengewässer; Versuch einer korrespondierenden Probenahme)





Bisoprolol

Name-UMPPS-	Kat.¤	Nam	Strukturformel¤	logKow¤	RT¤	s/N¤	auch.
Liste¤		e¤					in¤
Bisoprolol_15_ 13↔ S5·Tag·42↔ anaerob¤	4a¤	-¤	C15·H23·N1·O5¤	Mol.wt.298,1649+ logKow-2,74+ positiv¤	5,3¤	117¤	LKA¤
Bisoprolol_15_ 30_Peak1↔ S5·Tag·42↔ anaerob¤	4a¤	-¤	C13·H19·N1·O4¶ CH ₃ OH Bisoprolol 2.20. C _{1,} H _{1,} NO ₄ Monoisotopic Mass = 253.131408 Da	Mol.wt.254,1386 8.4- LogKow1,34- positiv¤	4,8¤	240¤	LKA¤
Bisoprolol_2_P eak1↔ S5·Tag·42↔ anaerob¤	4a¤	-¤	C15·H25·N1·O4¤	Mol.wt.284,1856 4+- logKow0,46+- positiv¤	5,2¤	34,1¤	-¤

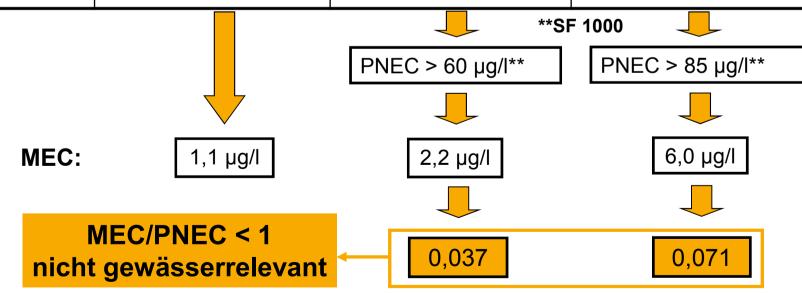
Ergebnisse in Oberflächengewässern/Uferfiltraten

Qualitatives suspected-target Screening

Stoffgruppe Arzneimittel	Anzahl 33	Substanzklasse Antidepressiva, Antiepileptika, Antibiotika, Beta-Blocker, Bluthochdruckmittel, Röntgen- kontrastmittel, Schmerzmittel, Zytostatika	Haupteintragspfad Kommunale Abwässer und Landwirtschaft	
PSM	6	Fungizide, Herbizide, Pestizide	Landwirtschaft	
Industrie- chemikalien	7	Korrosionsschutzmittel, Weichmacher	Industrielle Abwässer	
weitere Stoffe	8	Duftstoffe, Süßstoffe, Healthcare Produkte, Stimulantien (Koffein)	Kommunale Abwässer	

Methodenüberblick "Ökotoxikologie" (standardisierte Verfahren nach DIN, EN, ISO oder OECD)

- Akute Wirkungen gegenüber
 - Daphnien: Immobilisierung
 - Algen: Wachstumshemmung
 - Leuchtbakterien: Leuchthemmung
 - Fische (Embryo): Letalität
- Chronische Wirkungen
 - Algen: Wachstumshemmung NOEC
 - Daphnien: Reproduktion NOEC
 - Bei Bedarf:
 - Lemna: Wachstumshemmung
 - Sedimenttest mit Wasserpflanzen (Belebtschlamm)
- Spezielle Wirkungen
 - erbgutschädigendes Potenzial
 - Endokrine Wirkungen



Risikobewertung einzelner Sartane

	Candesartan	Olmesartan	Valsartan
Daphnientest akut	EC ₅₀ (48 h) > 120 mg/l	EC ₅₀ (48 h) > 120 mg/l	EC ₅₀ (48 h) > 580 mg/l (Quelle: Novartis)
Algentest	-	E_rC_{50} (72 h) > 120 mg/l NOEC (72 h) = 60 mg/l	E ₁ C ₅₀ (72 h) > 115 mg/l NOEC (72 h) = 85 mg/l
Fischei-Test Fischtest akut*	-	EC ₅₀ (48 h) > 120 mg/l	*LC ₅₀ (96 h) > 100 mg/l (Quelle: Novartis / Salmo gairdneri)

Ökotoxizität der Mischung

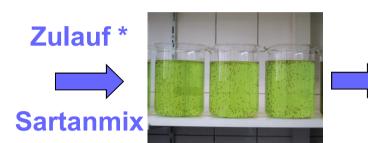


Foto: LfU

Foto: LfU

Ablauf

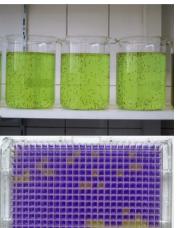


Foto: LfU

kein Effekt

Mischung aus:

Candes. bis 27 µg/l

Epros. bis $35 \mu g/l$

Irbes. bis 30 µg/l

Olmes. bis 26 µg/l

Vals. < 10 μg/l

kein Effekt

Mischung aus:

Candes. bis 9,7 µg/l

Epros. bis $18,3 \mu g/l$

Irbes. bis $17.7 \mu g/l$

Olmes. bis 21,3 µg/l

Vals. bis $0,1 \mu g/l$

sowie Abbauprodukte

Zusammenfassung und Ausblick

- Im Projekt RISK-IDENT wurden Vorgehensweisen und Instrumente zur Identifizierung von anthropogenen Spurenstoffen entwickelt (Basis LC-HR-MS)
- Suspected-target und non-target Screening wurde auf Proben aus Laborkläranlagen, Säulenversuchen sowie auf reale Proben angewandt
- Identifizierung von einzelnen Transformationsprodukten war erfolgreich
- Toxizitätsuntersuchungen tragen zur Bewertung einzelner Stoffe, aber auch von Stoffgemischen bei
- Datenpool wird in der letzten Projektphase noch mit den verbesserten Methoden zur Stoffidentifizierung (STOFF-IDENT in Verbindung mit dem Retentionszeitindex) analysiert

Fazit: Nur durch das Zusammenwirken vieler Labors und die Nutzung frei zugänglicher Tools kann die Identifizierung bislang unbekannter Spurenstoffe im Wasser entscheidend vorankommen

Projektteam Februar 2014

Bundesministerium und Forschung

